Mark schemes

_		
\sim	_	
	7	
w		Ι.

(a) Milky Way 1 dust and gas (b) (c) gravitational force 1 (d) fusion 1 visible light takes the same time as infrared radiation (e) 1 (f) greater 1 greater rate than the Earth (g) the Sun is at a higher temperature allow the Sun has a greater surface area MP2 is dependent on MP1 [8]

Q2				
	(a)	infrared camera allow thermometer, thermal imaging camera, night		
		vision goggles	1	
	(b)	690 nm		
	(-)	hanna ann an datach all tha an laura (a harran ann)	1	
	(c)	bees cannot detect all the colours (a human can)	1	
		bees can detect UV radiation (but humans can't)		
		allow bees cannot detect red (light but humans can)	1	
	(d)	reflected	1	
		absorbed		
		this order only	1	
	(e)	black		
	(f)	diffuse	1	
	(f)	ulluse	1	[8]
				[0]
Q3	. (a)	1 (°)		
	(a)		1	
	(b)	Level 3: The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.		
			5-6	
		Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully		
		logically sequenced.	3-4	
		Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.		
			1-2	
		No relevant content	0	

Indicative content

Some indicative content could be indicated within a labelled diagram

- place a glass block on a piece of paper
- draw around the glass block
- use the ray box to shine a ray of light through the glass block
- mark the ray of light entering the glass block
- mark the ray of light emerging from the glass block
- join the points to show the path of the complete ray through the block
- and draw a normal line at 90 degrees to the surface
- use a protractor to measure the angle of incidence
- use a protractor to measure the angle of refraction
- use a ray box to shine a ray of light at a range of different angles (of
- increase the angle of incidence in 10 degree intervals
- from an angle of incidence of 10 degrees to an angle of incidence of 60 degrees

Methods involving mirrors and reflection score zero

points plotted correctly

allow tolerance of ± half a small square

curve drawn passing through points allow a line starting at the origin

the line curves (d)

> allow the line is not straight allow line does not pass through the origin if consistent with their answer to question (c)

normal drawn (e)

> ray reflected so i = r judge by eye

(f)

1

1

1

1

1

1

1

[6]

[5]

Q4.

(a) wavelength = Q

(b) amplitude = $\frac{R}{2}$

(c) radio waves

(d) s = 300 000 000 × 0.000009 s = 2700 (m)

(e) satellite communications

or

cooking /heating food

allow WiFi

Q5.

(a) absorbed

(b) wave speed = frequency × wavelength

allow correct re-arrangement

or

 $V = f \lambda$

(c) $3.0 \times 10^8 = 4.0 \times 10^{14} \times \lambda$

 $\lambda = \frac{3.0 \times 10^8}{4.0 \times 10^{14}}$

 $\lambda = 7.5 \times 10^{-7} \text{ (m)}$ allow 0.000 000 75 (m)

	C
W	ס

(a) ultraviolet travels at the same speed as visible light

1

(b) D

1

С

1

this order only

(c) A 400 - 315 = 85 (nm)

B 315 - 280 = 35 (nm)

C 280 - 100 = 180 (nm)

three calculations correct 2 marks one or two calculations correct 1 mark

2

ultraviolet C (UVC)

mark dependent on all three calculations being made

1

(d) Level 2: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.

3-4

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

1-2

No relevant content

0

Indicative content:

- ozone absorbs all of the UVC
- UVC is the most dangerous
- ozone absorbs nearly all (95%) of the UVB
- UVB has a medium risk
- ozone doesn't absorb any UVA
- ozone does not reduce risk from UVA
- UVA is the least dangerous
- the greater the ionising power the greater the absorption by ozone
- the greater the ionising power the greater the risk
- UV damages skin cells
- can lead to skin cancer
- can cause sunburn
- UV can damage eyes
- leads to problems with eyesight

(e)	our eyes detect visible light allow it would be dark all the time	
	allow specific effect ie plants couldn't grow	1
(f)	transmitted	1
	absorbed	1
	this order only	[13]